Nucleophilic reaction of propane-1,3-dithiol with tetrachloroethylene: formation of cyclic structures

D. V. Demchuk, A. V. Miroshnichenko, and G. I. Nikishin*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: +7 (095) 135 5328. E-mail: demchuk@ioc.ac.ru

The reaction of aliphatic and aromatic thiolates with tetrachloroethylene (TCE) involves, depending on the ratio of the reactants, replacement of two, three, or four Cl atoms by RS groups. The replacement of two Cl atoms affords only vicinal dichlorides, trans-1,2-dichloro-1,2-bis(organothio)ethylenes. 1,2

We found that in the reaction of equimolar amounts of tetrachloroethylene and 2,2-diethylpropane-1,3-dithiol (1) under conditions of generation of thiolate anions, these anions substitute both vicinal and geminal Cl atoms. The vicinal substitution occurs with *cis*-orientation. The reaction of dithiol 1 and TCE taken in a molar ratio of 1:4 gives a mixture of heterocycles, 2,3-dichloro-6,6-diethyl-6,7-dihydro-5*H*-1,4-dithiepine (2) and 2-dichloromethylene-5,5-diethyl-1,3-dithiane (3) in 3:1 ratio (overall yield 52%).

The structures of the reaction products were determined by 13 C and 1 H NMR data and mass spectra. The proportions of isomers 2 and 3 in the mixture were found from the integral intensities of the signals of the carbon atoms forming the C=C bond in the 13 C NMR spectra and the signals of protons of the SCH₂ group in the 1 H NMR spectra. Found (%): C, 42.11; H, 5.28; Cl, 27.33; S, 24.70. C₉H₁₄Cl₂S₂. Calculated (%): C, 42.02; H, 5.49; Cl, 27.56; S, 24.93. 1 H NMR (250 MHz, CDCl₃), δ , 2, 3: 0.80, 0.85 (t, 6 H, CH₃; J= 7.5 Hz); 1.52, 1.52 (q, 4 H, CH₃CH₂, J= 7.5 Hz); 3.05, 2.67 (s, 4 H, SCH₂). 13 C NMR (75.47 MHz,-CDCl₃), δ , 2, 3: 7.6, 7.7 (CH₃); 26.7, 27.5 (CH₃CH₂); 38.1, 36.8 (Σ (CH₂)₄); 123.8 (C=C); 105.5 (C= Σ S); 133.1 (C=CCl₂). MS, m/z: 256 [M]⁺.

Along with monocyclic isomers 2 and 3, the reaction under these conditions gives, despite the excess of TCE, isomeric bicyclic products resulting from the replace-

ment of the four Cl atoms in TCE by thiolate anions, namely, 3,3,8,8-tetraethyl-3,4,8,9-tetrahydro-2H,7H-1,4-dithiepino[2,3-b][1,4]dithiepine (4) and 5,5,5',5'-tetraethyl-2,2'-bis(1,3-dithianylidene) (5) in a ratio close to 3:1 and in 16% total yield. The fractions containing compounds 2+3 and 4+5 were separated on a column with silica gel (L 40/100 μ m).

The reaction of TCE with a threefold molar excess of dithiol 1 (the second step, i.e., the reaction of thiolate with TCE, was carried out at 20-25 °C) affords only bicyclic products in 68% total yield (4:5 = 3:1). As in the case of isomers 2 and 3, the ratio of 4 to 5 in the mixture was determined using the NMR spectra. Chromatographic separation on silica gel and recrystallization from hexane gave bicyclic compounds 4 and 5. Compound 4, yield 48%, m.p. 78-80 °C. Found (%): C, 55.48; H, 8.20; S, 35.84. C₁₆H₂₈S₄. Calculated (%): C, 55.12; H, 8.09; S, 36.79. ¹H NMR (CDCl₃), δ: 0.77 (t, 12 H, CH₃, J = 7.5 Hz); 1.84 (q, 8 H, CH₃CH₂, J = 7.5 Hz); 2.83 (s, 8 H, SCH₂). ¹³C NMR (CDCl₃), δ : 7.5 (CH₃); 27.0 (CH₃CH₂); 37.5 (C(CH₂)₄); 42.3 (SCH₂); 127.8 (C=C). MS, m/z: 348 [M]⁺. Compound 5, yield 12%, m.p. 131.0—132.5 °C. Found (%): C, 54.88; H, 8.16; S, 35.82. C₁₆H₂₈S₄. Calculated (%): C, 55.12; H, 8.09; S, 36.79. ¹H NMR (CDCl₃), δ: 0.83 (t, 12 H, CH_3 , J = 7.5 Hz); 1.57 (q, 8 H, CH_3CH_2 , J = 7.5 Hz); 2.66 (s, 8 H, SCH₂). ¹³C NMR (CDCl₃), δ: 7.8 (CH₃); 27.2 (CH₃CH₂); 37.0 (C(CH₂)₄); 40.4 (SCH₂); 122.6 (C=C). MS, m/z: 348 [M]⁺.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 96-03-32769a).

References

- E. N. Prilezhaeva, N. E. Donzova, N. P. Petukhova, and V. S. Bogdanov, Gazz. Chim. Ital., 1990, 120, 235.
- 2 W. E. Truce, M. G. Rossmann, F. M. Perry, R. M. Burnett, and D. J. Abraham, *Tetrahedron*, 1965, 21, 2899.

Received December 25, 1998